中文名詞組的辨識:監督式與半監督式學習法的實驗 (Chinese NP Chunking: Experiments with Supervised, and Semisupervised Learning) [In Chinese]
نویسندگان
چکیده
This paper utilizes Yamcha, a SVM tool designed by Taku Kudo, to train an NP-chunking model for Chinese. In addition to IOB and two words surrounding the focused word, we experimented on new features and exploited unlabeled data from web pages to enhance the previous model. Our experiments with supervised learning indicate that our chosen feature sets outperform those reported in previous studies. In addition, the proposed method of semisupervised learning is proved to be effective in distinguishing a noun phrase from a verb phrase both consisting of V N combination, thus enhancing the overall accuracy. 關鍵詞:名詞組辨識、YamCha、監督式學習、半監督式學習
منابع مشابه
基於半監督式學習之廣播節目語音逐字稿自動轉寫系統 (Automatic Transcription of Broadcast Radio Speech Based on Quality Estimation-Guided Semi-Supervised Training) [In Chinese]
廣播節目製作時通常只有收錄語音訊號,沒有保留相對應的節目內容詮釋資料 (metadata),導致節目播出後,很難檢索節目內容,或是加以組織再利用。針對此問題, 常用的方法是以語音辨認器,自動轉寫廣播節目內容,產生語音逐字稿,但是目前缺乏 已標記好的廣播語音語料庫,因此無法訓練出適合轉寫廣播節目的語音辨識器。所以在 本論文中,我們探討如何同時使用語音訊號特徵參數、辨認器辨認結果與語言模型參數, 訓練一語音品質估算(Quality Estimation,QE)器,取代傳統只依賴語音辨認器的信心值 估算(Confidence Measure),從源源不絕,但未標記的大量廣播語料中,挑選適合訓練 語音辨認器的語料,進行半監督式聲學模型訓練,以提升轉寫廣播語料逐字稿的效能。 實驗中以一不佳錄音品質 NER-set1 與一優良 NER-set2 之廣播節目測試語料集,測試種 子語音辨認器與經半監...
متن کامل多語聲學單位分類之最佳化研究 (The Study of Acoustic Model Clustering in Multilingual Speech Recognition) [In Chinese]
由於全球化的形成,人與人之間的溝通不再限於同一種語言,因此多語的語音辨識也變 的格外的重要。如何有效整合多語的聲學模型是一個關鍵議題,因為一組好的多語聲學 單位將影響辨識結果。本論文提出了一套整合專家背景知識與實際語音分析的方法,來 產生一組新的聲學單位,並且對這組聲學單位的數目,使用差分貝式資訊法則來做最佳 的處理。從訓練好的隱藏式馬可夫聲學模型中,計算其單位間的相似度矩陣,之後透過 語音學和音韻學的知識,限定了各個聲學單位能群化的上限,根據不同限定的群化上 限,使用聚合階層式分群法,來建立不同的結構樹。之後,利用差分貝式資訊法則,將 每個結構樹中發音相近的聲學單位做合併,當差分貝式資訊法則的值小於零的時候,就 停止合併,而新合併成一群的聲學單位則為新的聲學單。我們將用 ForSDAT01 華台雙語 語料庫來實驗評量,而實驗結果顯示,本論文所提出的新方法比只用專家知識所定義的 聲學...
متن کامل整合邊際資訊於鑑別式聲學模型訓練方法之比較研究 (A Comparative Study on Margin-Based Discriminative Training of Acoustic Models) [In Chinese]
鑑別式聲學模型訓練在近代自動語音辨識(Automatic Speech Recognition, ASR)中扮演 重要的角色。在許多基於不同思維且能有效地提昇辨識率的鑑別式聲學模型訓練方法陸 續被提出後,對於訓練方法的相關推廣與改進便如雨後春筍般地興起;而這些方法在本 質上,皆是在描述訓練語句與語音辨識器所產生對應詞圖(Word Graph)之間的關係。本 論文首先將統整與歸納近年來所發展的多種鑑別式聲學模型訓練方法,並以三種最具代 表性鑑別式訓練方法:最小化分類錯誤(Minimum Classification Error, MCE)、最大化交 互資訊(Maximum Mutual Information, MMI)、最小化音素錯誤(Minimum Phone Error, MPE)為範例,透過有系統地轉換與化解方程式,得到聲學模型訓練準則的共通表示函 數型態。我們可以發現到,對於...
متن کامل相似度比率式鑑別分析應用於大詞彙連續語音辨識 (Likelihood Ratio Based Discriminant Analysis for Large Vocabulary Continuous Speech Recognition) [In Chinese]
在近十年來所發展出的自動語音辨識(automatic speech recognition, ASR)技術中,仍 有許多研究者嘗試僅藉由前端處理來產生具有鑑別性的語音特徵,而獨立於後端模型訓 練與分類器特性。本論文即在此思維下提出嶄新的鑑別式特徵轉換方法,稱為普遍化相 似度比率鑑別分析(generalized likelihood ratio discriminant analysis, GLRDA),其旨在利 用相似度比率檢驗(likelihood ratio test)的概念尋求一個維度較低的特徵空間。在此子空 間中,我們不僅考慮了全體資料的異方差性(heteroscedasticity),即所有類別之共變異矩 陣可被彈性地視為相異,並且在分類上,因著我們也將類別間最混淆之情況(由虛無假 設(null hypothesis)所描述)的發生率降至最低,而達到有助於分類正確率提升的效...
متن کامل完全基於類神經網路之語音合成系統初步研究 (A Preliminary Study on Fully Neural Network-based Speech Synthesis System) [In Chinese]
A Preliminary Study on Fully Neural Network-based Speech Synthesis System 廖書漢 SHU-HAN Liao ,蔡亞伯 YaBo Chai , 廖元甫 a Yuan-Fu Liao, a 國立台北科技大學電子工程系 [email protected], [email protected], [email protected] 摘要 傳統的語音合成使用先文字分析後語音合成的架構,但是這種兩階段的作法, 通常會有,若前級分析錯誤,就會影響後級合成,且無法挽救的問題。因此,在 本論文中我們希望嘗試把前後級,全部都改成以類神經網路實現,以便將來可以 直接合成一個大的端對端語音合成類神經網路。主要的想法是,直接以字元串為 輸入單位,並盡量用大量未標記語料,進行非監督式類神經網路訓練。我們的系 統包含四個子網路,分...
متن کامل